Luke Metz

Luke Metz

AI research & product

Publications

This list is a bit out of date. See my Google Scholar for a more recent work.

2023

Gpt-4 technical report

OpenAI

Variance-reduced gradient estimation via noise-reuse in online evolution strategies

Oscar Li, James Harrison, Jascha Sohl-Dickstein, Virginia Smith, Luke Metz

NeurIPS 2023

Transformer-based learned optimization

Erik Gärtner, Luke Metz, Mykhaylo Andriluka, C Daniel Freeman, Cristian Sminchisescu

IEEE/CVF Conference on Computer Vision and Pattern Recognition

2022

ChatGPT: Optimizing language models for dialogue (blog post)

OpenAI

Velo: Training versatile learned optimizers by scaling up

Luke Metz, James Harrison, C Daniel Freeman, Amil Merchant, Lucas Beyer, James Bradbury, Naman Agrawal, Ben Poole, Igor Mordatch, Adam Roberts, Jascha Sohl-Dickstein

Beyond the imitation game: Quantifying and extrapolating the capabilities of language models

[Many people!]

Lyapunov Exponents for Diversity in Differentiable Games

Jonathan Lorraine, Paul Vicol, Jack Parker-Holder, Tal Kachman, Luke Metz, Jakob Foerster

AAMAS 2022

General-purpose in-context learning by meta-learning transformers

Louis Kirsch, James Harrison, Jascha Sohl-Dickstein, Luke Metz

A closer look at learned optimization: Stability, robustness, and inductive biases

James Harrison, Luke Metz, Jascha Sohl-Dickstein

NeurIPS 2022

Discovered policy optimisation

Chris Lu, Jakub Kuba, Alistair Letcher, Luke Metz, Christian Schroeder de Witt, Jakob Foerster

NeurIPS 2022

Practical tradeoffs between memory, compute, and performance in learned optimizers

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, Jascha Sohl-Dickstein

Conference on Lifelong Learning Agents, 2022

2021

Gradients are Not All You Need

Luke Metz*, C Daniel Freeman*, Samuel S Schoenholz, Tal Kachman

Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies

Paul Vicol, Luke Metz, Jascha Sohl-Dickstein

ICML 2021, Best paper award

Learn2Hop: Learned Optimization on Rough Landscapes

Amil Merchant, Luke Metz, Samuel S Schoenholz, Ekin D Cubuk

ICML 2021

On linear identifiability of learned representations

Geoffrey Roeder, Luke Metz, Diederik P. Kingma

ICML 2021, DeepMath Workshop 2019

Training Learned Optimizers with Randomly Initialized Learned Optimizers

Luke Metz, C. Daniel Freeman, Niru Maheswaranathan, Jascha Sohl-Dickstein

Reverse engineering learned optimizers reveals known and novel mechanisms

Niru Maheswaranathan, David Sussillo, Luke Metz, Ruoxi Sun, Jascha Sohl-Dickstein

NeurIPS 2021. NeurIPS MetaLearning Workshop 2020

2020

Parallel training of deep networks with local updates

Michael Laskin*, Luke Metz*, Seth Nabarrao, Mark Saroufim, Badreddine Noune, Carlo Luschi, Jascha Sohl-Dickstein, Pieter Abbeel

Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian

Jack Parker-Holder*, Luke Metz, Cinjon Resnick, Hengyuan Hu, Adam Lerer, Alistair Letcher, Alexander Peysakhovich, Aldo Pacchiano, Jakob Foerster*

NeurIPS 2020

Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves

Luke Metz, Niru Maheswaranathan, C Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein

NeurIPS MetaLearning Workshop 2020

Using a thousand optimization tasks to learn hyperparameter search strategies

Luke Metz, Niru Maheswaranathan, Ruoxi Sun, C Daniel Freeman, Ben Poole, Jascha Sohl-Dickstein

NeurIPS MetaLearning Workshop 2020

2019

Learning to Predict Without Looking Ahead: World Models Without Forward Prediction

C. Daniel Freeman, Luke Metz, David Ha

NeurIPS 2019

Understanding and correcting pathologies in the training of learned optimizers

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C. Daniel Freeman, Jascha Sohl-Dickstein

ICML 2019 (20 min oral), NeurIPS 2018 metalearning workshop

Guided evolutionary strategies: Augmenting random search with surrogate gradients

Niru Maheswaranathan, Luke Metz, George Tucker, Jascha Sohl-Dickstein

ICML 2019

Meta-Learning Update Rules for Unsupervised Representation Learning

Luke Metz, Niru Maheswaranathan, Brian Cheung, Jascha Sohl-Dickstein

ICLR 2019 (oral), COSYNE 2018 (oral), NeurIPS 2017 metalearning workshop

Towards GAN Benchmarks Which Require Generalization

Ishaan Gulrajani, Colin Raffel, Luke Metz

ICLR 2019

Using learned optimizers to make models robust to input noise

Luke Metz, Niru Maheswaranathan, Jonathon Shlens, Jascha Sohl-Dickstein, Ekin D. Cubuk

ICML workshop: Uncertainty and Robustness in Deep Learning 2019

2018

Adversarial Spheres

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Wattenberg, Ian Goodfellow

2017

Compositional Pattern Producing GAN

Luke Metz, Ishaan Gulrajani

NeurIPS 2017 creativity workshop

Discrete Sequential Prediction of Continuous Actions for Deep RL

Luke Metz, Julian Ibarz, Navdeep Jaitly, James Davidson

Began: Boundary Equilibrium Generative Adversarial Networks

David Berthelot, Tom Schumm, Luke Metz

Unrolled Generative Adversarial Networks

Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein

ICLR 2017

2016

Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks

Alec Radford, Luke Metz, Soumith Chintala

ICLR 2016

rss facebook twitter github youtube mail spotify lastfm instagram linkedin google google-plus pinterest medium vimeo stackoverflow reddit quora quora